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ABSTRACT

57

A practical method of obtaining an explicit solution to an inhomoge-
neous system of linear differehtial equations with constant coefficients
is described. The method is readily adaptable to solving large systems
on high speed digital computers and is particularly efficient when a
large number of solutions are desired for the same set of equations with
different initial conditions ‘and forcing functions. The problem that
often arises when large eigenvalues are present is overcome by a unique
feature, The solution is obtained for an exceptionally small integration
step and a process is describeéd whereby the step can be doubled., Succes-
sive applications of this process provide a solution over an interval
which increases exponentially in size with each step whereas the work
involved increases only in a linear fashion. This is particularly
advantageous since standard techniques require that special provisions
must be made for any system which has exceptionally large eigenvalues,.
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TECHNICAL MEMORANDUM X-53079

AN EXPLICIT SOLUTION FOR LARGE SYSTEMS OF
LINEAR DIFFERENTIAL EQUATIONS

SUMMARY

A practical method of obtaining an explicit solution to an inhomoge-
neous system of linear differential equations with constant coefficients
is described., The method is readily adaptable to solving large systems
of equations containing large eigenvalues, The solution is first obtained
at a small interval, A process is described which yields the solution at
twice this interval by several matrix operations. Successive applications
of this operation increase the interval exponentially while the number of
operations required increases linearly. It is feasible to choose an
exceptionally small interval initially and thus avoid the usual problems
associated with large eigenvalues. The solution is expressed explicitly
as a function of initial conditions and unspecified parameters for a
large class of forcing functions,.

I, INTRODUCTION

A great amount of effort and computer time is frequently required
to determine solutions to a given set of differential equations for a
large number of different initial conditions and forcing functions, Of
these differential equations, a large number are or can be represented by
a set of linear differential equations, For a rather large class of
forcing functions, these equations can be solved explicitly as a linear
combination of initial conditions and forcing function parameters, A
specific solution is then reduced to evaluating the inner product of two
vectors for any given variable at a prespecified time. Such an explicit
solution permits rapid evaluation of large statistical samples of initial
conditions and forcing functions in addition to providing considerable
additional insight into the problem, As a first step in this direction,
this paper presents a solution for the special case where the coefficients
of the system are constant,



II, GENERAL SOLUTION FOR CONSTANT COEFFICIENTS

In matrix notation, a constant coefficient, linear system of
differential equations can always be expressed in the following form:

X = AX + F(t) (1)
where X, X and F(t) are vectors and A is a matrix of constant coef-

ficients.

This equation has the following solution (Reference 1, p. 169):

t
x(e) = A(Et0) x(el) + f A1) £y dn, (2)
t:O
where
o n n
Alt=1) _ /T A gtnz D (3)

n=0

The problem of solving the system defined by equation (1) is thus
reduced to evaluating this series and performing the integration
indicated in equation (2).

I1I, EXPLICIT DECOMPOSITION OF THE FORCING FUNCTION
To evaluate the integral of equation (2) explicitly as a linear

combination of parameters which characterize the forcing function, we
may, with no loss of generality, write

P
F(t) = Z F. fi(t), %)
i=0




where the F; are constant vectors and the f;(t) are scalar variables.
To proceed further toward an explicit solution, consider

t
v/‘ éA(t-T) Fi fi(r) drt.

t-s

It will be assumed that, over the interval s, the scalar variable
f;(t) is an element of the set of all functions which can be written
as a linear combination of m + 1 basis functions which are to be
specified, The coefficients of the basis functions are the param-

eters of the set of forcing functions and are to be left arbitrary for
present purposes, Thus, we may write

fi(t)' = G(t) B, (3)

where

G(t) = <gm(t), 81 (E)s oees go(t)>

is a vector whose components are the basis functions and

L |
m

by~ 1

B. =1.

bo

is a vector whose components are parameters which are independent of
the variable of integration. Thus, we have

t t

f eA(t-T) F, fi(T) dr = { f AE-1) F, G(%) dT:l B.. (6)

t-s t-s



This decomposition of the forcing functions allows the necessary inte-
gration to be performed independent of the parameters of the forcing
function and, therefore, yields the result explicitly as a function of
these parameters,
IV, EXPONENTTAL EXPANSION OF THE INTEGRATION INTERVAL
The series in equation (3) can be effectively evaluated by taking

advantage of the important property,

Aty Ats eA(tl+t2), )

for which a proof appears in Reference 1.

In particular, it may be noted that if t; = t; = dt,

2
eAatJ _ eA(Zat).

I
L

Thus, if the series in equation (3) is evaluated at dt, its value at
25t can be determined by simply squaring the matrix obtained for dt.
This can be extended to 2X st by k matrix multiplications,

The integral of equation (6) over an interval 25t can be expressed
as follows for each value of 1i:

t

[ Jf eA(t-T) F. G(1) dT} Bi'

—
t=-25t

This integral can then be expressed as a sum of two integrals,




e
f LA(t-7) F, G(7) dr = J Alt-1) P, G(r) dr
t-25t t-28t
t
+ \/ﬁ eA(t_T) Fi G(t) dr7.
t-3t

A transformation on the variable of integration of the first of these
integrals yields

t=-5t t-
JF eA(t-T) Fi G(1) dT = J[ eA(t-T+6t) Fi G(t - dt) dt
t=-25t t-3t
t
+ b/\ eA(t-T) Fi G(t) dr.
t=-5t

The property described in equation (7) implies that

eA(t-1+at) - ABt eA(t-T).

Furthermore, it will be required that the basis functions G(t) have the
following property:

G(t - dt) = G(71) T(- 3t). (8)



Then,

t t

JF eA(t-T) Fi G(r) dr = eA6t [ Jf eA(t-T) Fi G (1) dTJ T(-5t)
t-25t t-ot
i (9)
N { Jf A(E=1) F, G(7) dw} .
" t-dt

This result shows that the integral over 25t can be determined by two
matrix multiplications and one matrix addition provided only that the
integral be known over &t, that eAdBt is known and that T(-dt) is defined.
Choosing fi(t) to be polynomials provides the following definitions:

j .
gj(t) =t, j=0,1, ..., m

™ N
1 0 0 ces 0
(T)&t 1 0 ... 0
(§)5t2 (mil)gt 1 ... 0
T(dt) =
m m m-1 m-1 m=-2 m-2
_(m) Bt (100t (,_p)8t cee 1_




In order to evaluate the integral required in equation (9), we

from equation (6) that

t t

JF G F, £.(7) d7 = \/p A1) F; G(v) d7v B, O =

=3t t=5t
Let ' = t - 17 be a change of variable of integration., Then
t Bt
1
JP eA(t 2 F. G(t) dt B, = \/“ eAT F.G(t - ') dt' B.
i i i i
=5t (o)
ot
A ]
= \/ﬁ e F, G(-7') dt' T(t) B,
i i
o

by using equation (8). Now defining

o™ L., 0 0 0 0
e — 0 . . . "1 0 0 O
% = ,
0 « o e 0 1 0 0
0 . e s 0 0 -1 0
0 . o 0 0 0 1
i.e., 1lJ = 0, i#3
m+l-i .
= (-1) > L. = ]

get



gives
G(-t') = G(¢") T*,

Thus, we have

t ot
A(t-T1) _ A7' 1 R
f e F, G(r) B, = f e F.G(c') dr' I® T(t) B,
t-5t o
= Pi(6t) * T(t) Bi
where
ot
A

Pi(gt) = Jf et F.G(1) dr. (10)

)

Bellman [1] proved that the series of equation (3) is uniformly
Furthermore, a sufficiently

convergent in any finite interval (0, t - 7).
small interval (0, &t), where O < dt = s can be specified such that the
matrix series defining efAdt and P, (3t) can be evaluated with negligible

error by a small number of terms,

With P;(dt) evaluated we have

t
jF eA(t-T) Fi G(7) dt Bi = Pi(gt) I* T(t) Bi. (11)

t-ot




Substituting this result into equation (9) gives

t

f AT § Gy dr B, = {eAf’t P.(st) T*T(t) T(-5t) + P, (5t) I‘«'»‘T(t)}B..
1 1 1 1 1
t-28¢t

This may be simplified by proving
I% T(t) T(~8t) = T(dt) I*T(t). (12)

From equation (8) we get

Glt + (tp + 12)] = G(7) T(7y + 7o)

GI(t + 79) + 2] = G(7v + 77) T(12) = G(1) T(1y) T(72).
Gl(t+12) + 11] = G(v + 12) T(1y) = G(1) T(12) T(Ty).
. T(Tl + Tg) = T(Tl) T(Tg) = T(Tg) T(Tl).

Also by definition

G(-7') = G(') I*

for any t'. Thus,

]

G(-7 + 71) = G(-1) T(ty) = G(7) T*T(1y)

but also

G(-1 + 1) =G(1 - 79 I* = G(1) T(-1y) TI*,



Therefore,

I*T(Tl) = T("Tl) I*,

Thus,

I*T(t) T(-dt) = I*T(-dt) T(t) = T(dBt) I*T(t)

which establishes equation (12),

Using this gives

t
\f‘ A(t=1) F,G(7) dt B, = J'Le%t P, (8t) T(5t) + Pi(at)} T*T(t) B.)
t-25t

(13)

provided only that 0 < 25t = s.

Thus, given the integral by equation (11) over an interval 5t,
equation (13) shows that the interval can be doubled b% two matrix
multiplications and one addition and requiring only eAOt Pi(6t), and
T(st) all of which are available,

Thus, the integral of equation (2) can be evaluated explicitly as
a linear combination of the coefficients of an arbitrary polynomial of
degree less than or equal to m, This can be accomplished for a point
to + At (where At = 2K st = s) by 4k matrix multiplications and k matrix
additions, This results in the integration interval being expanded
exponentially while the computer time increases only linearly. This
exponential expansion of the integration interval then gives us

t

f eA(t'T) FlG(T) dr Bl = Pl(At) '_[:':T(t) B]_. (14)
t=At

10




V. SOLUTION AT EVENLY SPACED POINTS

Given the initial conditions at time t,, the above results can be
employed to efficiently obtain the explicit solution at later times,
From equations (2), (4), and (5) we have

totAt
X(to + at) = e x(e ) + Z f AE-T) F.G(1) d7 B,
i to

by equation (14),

—
X(tg + At) = HAE X(tgy) + EJPi(Ax) I*T(t, + At) Bj,

i

and by equation (12),

AAE . N % 1
X(tg + At) = e X(t,) + 21{Pi(At)T(-A¢) T*T(t,) Bj. (15)
i
Defining
By = T*T(ty) Bi’
we have

X(e, + AL) = AAE x(t) + j; P (Ar) T(-At) Eio.

i

11



Now defining
m, (L) = Pi(Ap) T(-At),

gives

ANt -
X(to + At) = e X(to) + z mi(At) Bio' (16)
i
Thus, we have the response at t = t, + At as a linear combination of
initial conditions at t = t, and the parameters Bj, which characterize

the forcing functions in the interval tg = t £ ty + AL,

More generally we get from equation (15) for kAt = s,

. Akat \
X(ty, + kAat) = e X(to) + Z Pi(kAt) T(~kAL) I«\T(to) Bi
i
_ Akat = _
X(t, + kat) = e X(tg) -+j;}ni(kat) B.» k=1,2,3, ... (17)
1

However, by writing tgy + kAt t, + (k - 1) At + At, we get similarly

from equations (14) and (15)

o

X(t, + kAt) = eAAt x[to + (k - 1) aAt] + ZPi(At) *T(t, + kAt) Bi
i
X(ty + kat) = MAE R, + (k - 1) At] + j;lni(ax) T[- (k - 1) At] I¥T(t.) B,
T
ANt -
X(tg + kAt) = e X[ty + (k - 1) at] + ?mi(At) T[- (k - 1) At] Bio'

1 (18)
12




But by equation (17)

—

X(t) + } m, [k - Dace] B,

L
1

X[to + (k - 1) at] = HE-DAC

which with equation (18) and equation (7) gives

X(ty + kat) = e FOF X(t,) + ZeAAt mo [k - 1) acl B,

i

+ Zmi(gt) T[-(k - 1)At] Eio

i

_ AR )y z{eAﬁt m [(c - Dae] +m (ar) T[-(k-l)At]} B o
i

Comparing this result with equation (17) shows

ANE

mi(kAt) = e mi[(k - AT + mi(At) T[-(k - 1)At] (19)

where

m, (At) T[-(k - L)at] = {mi(At) T[-(k - Z)At]}T(—At), k=1,2,....

Thus, equation (17) gives the solution at successive evenly spaced points
by using the recursive relation of equation (19), This requires only
eAAm, m; (At) and T(-At) all of which have been previously determined,



Equation (17) gives the solution at any point t, + kAt for which
k = k,, where k; is the largest value of k for which the forcing func-
tions are described by the same vector B; of equation (5).

If more generally we have

iIA

£,(£) = G(t) B, 0=t + koAt = ti, (20)

o

fi(t) G(t) Bil tx

IIA
s
A

then by equation (17)

X(ty + kat) = e x(tg) + Z mo(kae) By, k=1, 2, .. kg

i

kAt 5
X(tkl + kat) = eA & X(tkl) + Z mi(k&t) Bio» k=1,2, ... kg

i
where
By = *¥T(t ) By, (21)
Thus
X(ty + kat) = eA(kl+k)At X(tg) + ?eAkAt m, (k,At) B,
1 y i io
i
+ }j mGea) By kT, 2, e K (22)

i

14




By using the recursive relations of equation (19) we get the solution
at successive evenly spaced points explicitly as a linear combination

of initial conditions and the vectors Eio and Eil which describe the
forcing functions,

VI, INTERPOLATING POLYNOMIALS

The use of polynomials which are defined differently over different
intervals adds considerably to the number of parameters that appear in
the solution, For simplicity of notation it will be assumed that the
same polynomial for £;(t) applies throughout an interval k,At but differs
from one such interval to the next. The change in definition of the
polynomial for f;(t) then is at a point at which a solution is obtained.
Furthermore, it will be assumed that in each adjoining interval of length
kAt each forcing function f.(t) is represented by an interpolation
scheme whereby the coefficients of the polynomials are a linear combina-
tion of several discrete values of f;(t). Let f? be the vector of all
the discrete values of fj(t) to be used, Generalizing equation (20)
gives

£3(t) = G6(t) B, ,, to + JkiAt st sty + (5 + 1) kAt

J
(23)

where the vector Bij which describes the interpolation scheme is now
given by

ot
W

.. = B.,. £7
ij ij i

s
w

(24)

where B?- is a matrix of constants defining the interpolation scheme,
Similarly, from equation (21), we generalize to get

Bij = I“T(to + jk,At) Bij' (25)

Thus, from equation (24)
B, . = I*T(t, + jk,At) B;j £7. (26)

ij i

15



Now defining

-t
w

*T(ty + jkiAE) B’;j (27)

gives

- -ts e
v -

ij = Bij fi' (28)

Thus, from equation (28) and equation (17), we get

_Akat =% * _
X(t0 + kAL) = e X(ty) + j{}ni(kﬁt) Bio fi’ for k=1, 2, ... kq.
: (29)
From equation (22), we get
X[ty + (ky + kK)At] = eA(k1+k)At X(tg) + ZE]{%AkAt mi(klﬁt) E:o
i
+m, (kat) BY } £
i ia| 71
N> 1.
= AU ey 4y M [ (kg HR) AL £ (30)
{_
i
where
e _ Akt =% =S
MY [(kpH)at] = e m, (kjAt) BY 4 m, (kat) BY . (31)

Continuing this process, we get

X[to + (jk, + kK)At] = eA(Jlirk)/’\t

X(ty) + >ﬂM~'§[(jkl + k)At] fl (32)
_TJ

16




where

i . Aknt o . -
MGk, + lat] = e o M (Jkaa0) +m (at) Bl k=12, kg
J = O’ 1’ 2, LI
(33)
and
M (0) = 1,
the null matrix, Thus, we have in general
A % S
X(to + T]At) = e T]At X(to) + Z Ml(nAt) fl’ n = 1’ 2’ eee N (34)

i

where f% is the vector of all the discrete values of £, ; (t) required by
the 1nterpolat10n scheme to represent the forcing functlons over the
range t, to ty where ty is the last point for which a solution is
required. This is the desired general explicit solution,

VII, CONCLUSIONS

The method just described is particularly applicable to statistical
studies requiring a largeé number of solutions to the same differential
equations with different initial conditions and forcing functions, It
should be noticed, however, that this is not the only advantage, Of
particular interest is the manner in which the size of the integration
step is increased, Whereas most techniques increase the integration step
in direct proportion to the work required, this technique increases the
step size exponentially while the number of operations required increases
linearly. This is extremely important in systems that contain large eigen-
values, In many such cases, explicit solutions can be obtained where the
time required by standard techniques would practically prohibit a solu=-
tion, The employment of this technique can be used to reduce computer
time required for a large number of solutions or tremendously increase
the number of solutions that can be obtained in the same time,

17



In addition to the actual solutions obtained, the explicit solu-
tion itself provides considerable insight, Essentially it gives all
the trade-off factors simultaneously and the effect of changes in the
value of the initial condition or forcing function is apparent and
immediately available from this solution,

18
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